Prostatectomie totale pour cancer de prostate a haut risque et localement avancé : revue de littérature

25 décembre 2018

Auteurs : G. Delporte, F. Henon, G. Ploussard, A. Briganti, J. Rizk, F. Rozet, K. Touijer, A. Ouzzane
Référence : Prog Urol, 2018, 16, 28, 875-889




 




Introduction


Prostate cancer (PCa) is the most common cancer diagnosed in men in the United States, and the second most-common cause of cancer-specific mortality. The discovery of PSA in the late 1970s and its subsequent use as a population-screening tool has had profound effect on the epidemiology of the disease. Consequently, PSA screening has led to an increase in the proportion of men diagnosed with low stage and low grade disease with an estimated lead-time bias of approximately 11 years. The proportion of men with advanced risk features however, has remained stable over time. Recent controversies regarding PSA screening has also led to a stage migration toward more high-risk PCa diagnosed in recent years. Accurate pre-treatment risk assessment for these high-risk PCa cases is challenging and there is no universally accepted classification. There are 3 well-defined predictors of disease outcome after treatment: clinical tumor stage, Gleason score of the diagnostic biopsy specimen, and serum PSA level. The definition of high-risk prostate cancer is usually based on these parameters. D'Amico et al. first combined them as categorical variables and patients with PSA above 20ng/mL or Gleason score of at least 8 or clinical stage of at least T2c were defined as high-risk. Since then, other high-risk classifications have been proposed, based not only on risk grouping but also on patient risk stratification according to nomograms-derived probabilities of treatment failure. In the past, patients with locally advanced or high-risk prostate cancer were most frequently managed with External Beam Radiotherapy (EBRT) combined with long-term Androgen Deprivation Therapy (ADT). This default strategy stems from the lack of level I evidence comparing radiation therapy to surgery and from historical concerns about the morbidity of radical prostatectomy (RP) in the locally advanced setting, along with a limited appreciation of the cumulative benefit of multimodality therapy. Retrospective long-term cancer control data however, support the role of RP alone or in combination with other therapeutic modalities in the management of high-risk and locally advanced PCa [1].


The aim of this systematic review was to assess the role of RP in the management of high-risk and locally advanced PCa patients by evaluating oncological, peri-operative and functional outcomes of this surgical approach.


Materials and methods


MEDLINE, Embase and the Cochrane Central Register of Controlled Trials were searched from January 2000 through May 2016 according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) statement guidelines. The systematic review used both subject and text-word terms for "radical prostatectomy", "prostate cancer", "surgery", "outcome", "high risk" and "high-grade" in combination with keyword searching to identify articles describing oncological and functional outcomes of RP among patients with high-risk and locally-advanced prostate cancer. Search results were restricted to English language. References of all selected articles were checked for additional cross-references. Given the low level of standardization in the definition of high-risk or locally advanced disease and the use of adjuvant therapy, no exclusion regarding these two parameters was performed. Two authors (FH and GD) independently selected studies and discrepancies between the two investigators were resolved via consensus among participating authors. Figure 1 presents the search strategy flow chart.


Figure 1
Figure 1. 

Study flowchart.





Results


Studies characteristics


Our literature search identified 42 original articles reporting results for 52,546 patients (Table 1). Studies were heterogeneous especially regarding the definition used for high-risk disease. Seventeen used the D'Amico definition [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], 9 used the National comprehensive cancer network (NCCN) definition [19, 20, 21, 22, 23, 24, 25, 26, 27], 16 used a definition based on the presence of at least 1 or 2 criteria of high-risk disease [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Three studies included 2 subgroups for analysis: Bastian et al. [29] reported results of patients from 2 centers, Pierorazio et al. [10] reported results of 2 different eras (before and after 2000), Chulkoo et al. [26] reported 2 groups of patients: high-risk prostate cancer group (PSA≥20ng/mL or Gleason 8-10 or cT3a) and very high-risk prostate cancer group (≥cT3b and/or cN1).


Patient characteristics and perioperative outcomes


Patient characteristics are summarized in Table 1. The number of patients included in each study ranged from 41 to 30,379. Median age of patients ranged from 56 to 73.5 years. The pre-operative PSA level was≥20ng/mL in 7.9% to 100% of patients. Clinical stage of included patients was≥T2c in 3% to 76% and≥T3c in 3.8% to 100% of cases. There were no data regarding clinical stage in 4 studies. Biopsy Gleason score≥8 ranged from 9 to 100%.


Perioperative data are presented in Table 2. Regarding the surgical approach, 14 studies showed results for open retropubic RP, 4 studies for laparoscopic RP (with or without robotic assistance) and 4 studies reported results using both modalities. There were missing data for 20 studies regarding the surgical approach used. All studies reported data on lymphadenectomy except one. Regarding pathological features, the proportion of Gleason score≥8, pathological stage≥T3, positive surgical margins and pN+ ranged from 7.5% to 96.0%, 28.0% to 92.2%, 18.0% to 62.7% and 1.9% to 37.4%, respectively.


Postoperative complication rates were rarely reported (Table 2). Mortality within 30 days postoperatively was 0-1% and Clavien≥3complications ranged from 1.8% to 12%. Although, many series did not use standardized classification for complication reporting, thus events may be underreported.


Adjuvant and salvage therapy


Adjuvant therapy was administrated in 1.9% to 100% of cases in 23 studies and consisted of ADT, EBRT or combination of both (Table 3). No adjuvant therapy was used in 9 studies and data was missing in 8 studies. Salvage therapy was delivered in 19 studies in case of biochemical or clinical recurrence in 0.7% to 87% of cases. No salvage therapy was delivered in 4 studies and there were no data regarding salvage therapy in 17 studies.


Oncological outcomes


The follow-up duration ranged from 25 to 186 months, and was not reported in 4 studies (Table 4). Biochemical recurrence (BCR) was most often defined by a PSA concentration≥0.2ng/mL. Two studies took as threshold an elevation greater than 0.4ng/mL and a threshold of 0.1ng/mL was reported for one study. Some authors have reported the clinical recurrence that they defined as either local recurrence documented by histology or distant metastasis confirmed by imaging. Carver et al. [32] included hormone refractory disease status. Most of the studies have reported only metastasis recurrence. BCR-free survival and clinical recurrence-free survival ranged from 32 to 94% and 78 to 94.2% at 5 years and from 27 to 68% and 72.5 to 87.4% at 10 years, respectively. Metastasis-free survival (MFS) ranged from 90 to 96.1% at 5 years and from 64.4 to 85.1% at 10 years. Overall survival (OS) and Cancer specific survival (CSS) ranged from 73.6 to 98.6% and 89.8 to 100% at 5 years and from 58 to 84% and 65 to 96.2% at 10 years, respectively.


Functional outcomes: continence and potency


Definitions used and technique of nerve sparing varied widely among studies, contributing to the heterogeneity of reported outcomes. Only 7 studies reported functional outcomes (Table 4). Continence was defined by the freedom from urine leakage (no pad use) but 2 studies did not provide any definition [18, 19]. The 12-mo continence rates ranged from 32% to 96.2%. Potency was defined by the ability to achieve vaginal penetration with or without phosphodiesterase type-5 inhibitors depending of the series. Erectile function recovery after RP, calculated for patients who were potent preoperatively, ranged from 60% to 64%.


Discussion


Historically, RP has focused on the treatment of low and intermediate-risk, organ confined PCa. Converseley, patients with locally advanced or high-grade disease were less likely to receive surgical management because of the high-risk of treatment failure and positive surgical margins. These patients were mainly treated by ERBT. Such a paradigm was reinforced by the positive findings from a phase III randomized trial sponsored by the European Organization for the Research and Treatment of Cancer (EORTC) comparing EBRT alone to EBRT plus immediate ADT in patients with high risk clinical T1c-T2 and clinical T3-4, without regional lymph nodes involvement. This trial showed that the combination EBRT plus ADT was associated with improved 5-year disease free survival from 40% to 73% and improved 5-year OS from 62% to 78% [44]. Subsequently it has been extrapolated that the treatment for high-risk and locally advanced PCa was the combined modality ADT plus EBRT. However, surgery has never been tested to either ADT or EBRT+ADT in this patient group in any randomized trial and it remained largely unstudied in this patient population. Nevertheless, several studies showed the excellent post-operative outcomes of RP in high-risk PCa patients. In this review, we found that for high-risk men treated with RP either alone or in combination with adjuvant treatment(s), OS and CSS ranged from 73.6 to 98.6% and 89.8 to 100% at 5 years and from 58 to 84% and 65 to 96.2% at 10 years, respectively. Although literature evidence highlights promising outcomes after RP, the results are very heterogeneous and all studies are retrospective. Furthermore, heterogeneity of high-risk and locally advanced PCa definitions used in published series makes outcomes comparison inappropriate. Risk heterogeneity was demonstrated within risk groups, when risk was assessed by predictive models. Indeed, a recent study showed that among patients defined as high-risk based only on a PSA level>20ng/mL, a significant proportion of these men had favourable profile at final pathology. Thus, 33% had pT2 disease, 57.9% had pathological Gleason score<7, 54% had negative surgical margins, and 85% were lymph node negative [39]. Similar studies of patients undergoing RP for locally advanced disease have found that up to 17%-30% had a pathologically-confirmed organ confined disease. Moreover, biopsy Gleason score or clinical stage alone has not always proven to be useful in predicting disease extent and outcome for individual patients, since clinical staging by digital rectal examination may underestimate the presence of extracapsular disease extent in 30% to 50% of patients and the incidence of Gleason upgrading between biopsy and RP specimen may reach 45% in some series [45].


However, whether surgery alone or in combination with adjuvant treatment(s) is equally or more effective than EBRT associated with long-term ADT is currently unknown. Previous retrospective evidence has shown possible advantages of RP over EBRT with regards to oncological outcomes. Zelefsky et al. compared the risk of metastasis between surgery and radiation therapy. This retrospective study comprised 2380 men treated at Memorial Sloan Kettering Cancer Center. Those treated with surgery had a significantly lower risk of metastasis at 8 years than patients who received radiation therapy. The scope of the risk reduction increased as the risk of the disease increased. There was 7.8% risk reduction in the high-risk group vs. 3.3% in the intermediate and 1.8% in the low-risk group [46]. Recently, Wallis et al. published a meta-analysis of 19 studies comparing RP and EBRT for clinically-localised prostate cancer including 118 830 patients. They found that the risk of overall mortality (aHR 1.63, 95% CI 1.54-1.73, P <0.00001) and PCa specific mortality (aHR 2.08, 95% CI 1.76-2.47, P <0.00001) were higher for patient treated with EBRT compared with those treated with surgery [47]. Subgroup analysis for high-risk PCa did not alter the direction of results regarding overall mortality (aHR 1.88, 95% CI 1.64-2.16, P <0.00001) and cancer specific mortality (aHR 1.83, 95% CI 1.51-2.22, P <0.0001). Another recent study including9362 high-risk of the Prostate Cancer data Base Sweden 3.0 who had undergone RT or RP between 1998 and 2012 showed a higher risk of prostate cancer death when EBRT was performed (HR 1.57 95% CI 1.33-1.85) but no differences after full adjustement (HR 1.03, 95% CI 0.81-1.31) [48]. However, these results cannot support the superiority of surgery over EBRT given the intrinsic limitations of the studies included in this meta-analysis, including their retrospective design, the lack of randomization, and potential selection bias (the majority of large T3 cancers may have been precluded from RP and offered EBRT). Only a randomized trial (currently ongoing) can answer to this clinically relevant question (www.spcginfo.org/). As a matter of fact, the 2016 European Association of Urology (EAU) guidelines on PCa suggest both treatment modalities as possible options for men with high-risk disease. What is certainly true is that recent advances in RP techniques during the last two decades have led to improved outcomes such as lower positive surgical margins rates, lower blood loss, reduced length of stay and better functional outcomes, sparking a renewed interest in the use of surgery in men with advanced PCa [32, 33, 41]. Predictive factors of biochemical recurrence after RP are well known and preoperative evaluation of risk has been improved by the use of MRI, targeted biopsy and choline positron emission tomography. Furthermore, accurately staging the lymph nodes offer the opportunity for those with nodal metastases to be considered candidates for a densified treatment based on immediate hormonal therapy and/or adjuvant radiotherapy. On the other hand, long-term data on patients with small burden nodal metastases suggests that up to 20% can remain free of disease with surgery as the sole treatment making and selected patients with N+ disease eventually candidate for a wait-and-see approach after RP [49].


Conclusions


Evidence suggests that surgical management, integrated or not in a multimodality approach, appears to be safe and reasonable therapeutic option in patients with high-risk and locally advanced PCa. Despite some retrospective and population-based studies have suggested improved outcomes after RP compared with RT, randomized trials assessing both oncologic and functional results are needed to confirm the important role of RP in the management of this population. In addition, the wide variability of the most commonly used definition of high-risk prostate cancer will affect the eligibility and sample size when designing surgical clinical trials.


Disclosure of interest


The authors declare that they have no competing interest.




Table 1 - Studies characteristics.
Author (yr)  Definition of high-risk disease  Number of patients  Age (median)  Preoperatory PSA≥20ng/mL n (%)  Clinical T stage n (%)  Biopsy Gleason score≥8 n (%)  Preoperatory median or/and mean PSA (ng/mL) 
Yossepowitch (2007)  D'Amico  957  61  275 (28.7%)  ≥T3: 144 (15%)  274 (28.6%)  6.19 (median) 
Yossepowitch (2008)  D'Amico  1359  61  441 (32.5%)  ≥T3: 243 (17.8%)  401 (29.5%)  NA 
Lodde (2008)  D'Amico  290  NA  152 (52.4%)  ≥T3: 45 (15.5%)  99 (34.1%)  NA 
Loeb (2010)  D'Amico  175  59  58 (33%)  ≥T2c: 66 (38%)  63 (36%)  NA 
Spahn (2010)  D'Amico  372  67  NA  ≥T2c: 282 (76%)  92 (28%)  34.1 (median) 
Walz (2010)  D'Amico  887  62.8  NA  ≥T3: 293 (33%)  269 (30.3%)  17.9 (median) 
Ploussard (2009)  D'Amico  110  61.6  NA  ≥T3: 8 (7%)  40 (36%)  23.2 (median) 
Ploussard (2011)  D'Amico  813  63.6  389 (47.8%)  ≥T2c: 274 (33.7%)  283 (34.6%)  17.6 (median)
21.7 (mean) 
Pierorazo (2011)
Before 2000 area 
D'Amico  667  59  NA  ≥T2c: 260 (39%)  214 (32.2%)  NA 
Pierorazo (2011)
After 2000 area 
D'Amico  764  59.5  NA  ≥T2c: 108 (14.6%)  535 (70%)  NA 
Masson-Lecompte (2010)  D'Amico  138  63.4  50 (36%)  ≥T3: 90 (66%)  19 (14%)  15.5 (mean) 
Roder (2013)  D'Amico  231  63  112 (48.5%)  ≥T2c: 108 (46.7%)  61 (26.4%)  20 (median) 
Abdollah (2015)  D'Amico  1100  63  187 (16.9%)  ≥T2c: 437 (39.8%)  635 (57.7%)  6.5 (median) 
Di Benedetto (2015)  D'Amico  446  64  NA  ≥T2c: 335 (75.1%)  223 (50%)  8.1 (median) 
Briganti (2014)  D'Amico  2065  64.5  NA  ≥ T2c: 853 (41.3%)  956 (46.3%)  16.3 (mean) 
Busch (2014)  D'Amico  330  65  NA  ≥T2c: 24 (7.3%)  286 (86.6%)  8.4 (median) 
Park (2013)  D'Amico  55  68.1  NA  ≥T3: 11 (20%)  37 (67.3%)  10.6 (median) 
Kulkarni (2015)  D'Amico  208  63  97 (46.4%)  ≥T3: 10 (4.8%)  60 (28.2%)  NA 
Arcangeli (2009)  NCCN  122  65.5  58 (47%)  ≥T2c: 12 (10%)  11 (9%)  NA 
Kawamorita (2009)  NCCN  46  65.5  9 (19.6%)  ≥T3: 8 (17.4%)  9 (19.6%)  8.1 (median) 
Briganti (2012)  NCCN  1366  66  745 (54.6%)  ≥T3: 779 (57%)  347 (25.4%)  21.3 (median)
24.9 (mean) 
Castelli (2014)  NCCN  244  68  122 (50%)  ≥T3: 22 (9%)  153 (52.7%)  20 (median) 
Lee (2014)  NCCN  251  67.5  NA  ≥T3: 157 (62.5%)  107 (42.6%)  12.3 (median) 
Briganti (2013)  NCCN  3828  65  NA  ≥T3: 1362 (35.6%)  1537 (40.2%)  18.2 (median) 
Boorjian (2011)  NCCN  1238  66  NA  ≥T3: 411 (33.2%)  464 (37.5%)  NA 
Chul Koo (2014)
High risk disease 
NCCN - High risk disease (PSA≥20ng/mL or Gleason 8-10 or cT3a)  101  73.2  NA  NA  55 (55%)  16.8 (median) 
Chul Koo (2014)
Very high risk disease 
NCCN - Very high risk disease (≥cT3b or cN1)  53  73.5  NA  NA  31 (60%)  26.3 (median) 
Dell'Oglio (2016)  NCCN  600  56  NA  ≥T3: 375 (62.5%)  258 (43%)  9.8 (median) 
Manoharan (2003)  Biopsy Gleason score≥ 79  63  13 (16.5%)  ≥T3: 3 (3.8%)  79 (100%)  12.7 (mean) 
Bastian (2006)  Biopsy Gleason score≥ 369  61.8  NA  ≥T2c: 50 (13.5%)  369 (100%)  9 (median) 13 (mean) 
Westover (2011)  Biopsy Gleason score≥ 285  65  42 (15%)  ≥T2c: 9 (3%)  285 (100%)  7.9 (median) 
Pokala (2013)  Biopsy Gleason score≥ 30379  62.5  NA  ≥T3: 8422 (27.7%)  30379 (100%)  NA 
Carver (2006)  cT3  176  61  NA  ≥T3: 176 (100%)  26 (15%)  12.7 (median) 
Freedland (2007)  cT3a  58  55.9  NA  T3a: 58 (100%)  13 (22%)  9.5 (median) 14 (mean) 
Moltzahn (2014)  cT3b and cT4  266  65  NA  T3b: 241 (90.6%) T4: 25 (9.4%)  68 (25.6%)  NA 
Joniau (2012)  cT3b and cT4  51  64.2  NA  T3b: 41 (80.4%) T4: 10 (19.6%)  NA  16.9 (median) 
Brandli (2003)  PSA≥20ng/mL  50  63  50 (100%)  T1-T2: 50 (100%)  13 (26%)  37.9 (mean) 
Zwergel (2007)  PSA≥20ng/mL  275  64  275 (100%)  NA  NA  NA 
Nguyen (2009)  PSA≥20ng/mL  41  62  41 (100%)  ≥T2c: 19 (46%)  2 (5%)  24 (median) 27.4 (mean) 
Spahn (2010)  PSA≥20ng/mL  712  65.6  712 (100%)  ≥T3: 315 (44.2%)  140 (19.7%)  46.6 (mean) 
Berglund (2006)  ≥cT2b - Biopsy Gleason score≥8 PSA≥15ng/mL  281  61  NA  NA  NA  22.7 (mean) 
Loeb (2007)  ≥ cT2b - Biopsy Gleason score ≥ 8 PSA ≥ 15ng/mL  288  63  NA  NA  NA  17.5 (median) 19.8 (mean) 
Miocinovic (2011)  ≥cT2b - Biopsy Gleason score≥8 PSA≥15ng/mL  267  62  64 (24%)  ≥cT2b: 129 (48%)  94 (36%)  NA 
Savdie (2012)  ≥cT2b - Biopsy Gleason score≥8 PSA≥20ng/mL  153  62.2  12 (7.9%)  ≥T3:10 (6.7%)  45 (29.4%)  8.1 (median) 



Légende :
NA: not available; NCCN: national comprehensive cancer network.



Table 2 - Perioperative outcomes.
Author (yr)  Surgery modality  Bilateral standard PLND  ≥pT3 n (%)  Gleason score≥8 n (%)  pN+ n (%)  Positive surgical margins n (%)  Complications n (%) 
Yossepowitch (2007)  NA  Yes  550 (57%)  200 (21%)  111 (12%)  275 (29%)  NA 
Yossepowitch (2008)  NA  Yes  NA  NA  NA  NA  NA 
Lodde (2008)  NA  Yes  215 (74.2%)  73 (25.1%)  96 (33%)  NA  NA 
Loeb (2010)  ORP  Yes  87 (50%)  NA  25 (14%)  32 (18%)  NA 
Spahn (2010)  ORP  Yes  318 (85.5%)  NA  139 (37.4%)  178 (57.2%)  NA 
Walz (2010)  NA  Yes  468 (52.8%)  186 (21%)  104 (11.7%)  343 (38.7%)  NA 
Ploussard (2009)  LRP  Yes  72 (65.5%)  36 (33%)  4 (3.6%)  43 (39%)  NA 
Ploussard (2011)  NA  Yes  516 (63.5%)  290 (35.6%)  84 (10.3%)  371 (45.6%)  NA 
Pierorazo (2011)
Before 2000 area 
NA  Yes  412 (61.8%)  173 (26.1%)  69 (10.4%)  NA  NA 
Pierorazo (2011)
After 2000 area 
NA  Yes  395 (51.7%)  379 (50.3%)  65 (8.7%)  NA  NA 
Masson-Lecompte (2010)  ORP (80%) - LRP (20%)  Yes  92 (67%)  39 (28%)  21 (15%)  67 (49%)  NA 
Roder (2013)  ORP  Yes  129 (66%)  57 (24.7%)  10 (4.3%)  115 (49.8%)  NA 
Abdollah (2015)  RARP  Yes (93.6%)  NA  402 (36.5%)  127 (11.5%)  383 (34.8%)  NA 
Di Benedetto (2015)  LRP  Yes  394 (88.3%)  NA  72 (16.2%)  116 (26%)  7.6% - Clavien>2: 29 (6.5%) 
Briganti (2014)  NA  Yes  1148 (55.6%)  400 (19.4%)  207 (10%)  1129 (54.7%)  NA 
Busch (2014)  ORP - LRP - RARP  Yes (94.2%)  159 (48.2%)  151 (45.8%)  37 (11.2%)  134 (40.6%)  NA 
Park (2013)  ORP  Yes  37 (67.3%)  39 (70.9%)  3 (5.4%)  19 (34.5%)  1.8% - Clavien 3 
Kulkarni (2015)  ORP  Yes  NA  68 (32.7%)  56 (26.9%)  65 (31.2%)  NA 
Arcangeli (2009)  NA  Yes  NA  NA  NA  NA  NA 
Kawamorita (2009)  NA  Yes  27 (58.7%)  26 (56.5%)  1 (2.2%)  NA  NA 
Briganti (2012)  ORP  Yes  1025 (75%)  397 (29.1%)  313 (22.9%)  613 (44.9%)  NA 
Castelli (2014)  NA  Yes  164 (67.2%)  109 (44.7%)  0% (excluded)  86 (35.2%)  NA 
Lee (2014)  ORP (24%) - RARP (76%)  Yes  NA  NA  NA  NA  NA 
Briganti (2013)  NA  Yes  1834 (47.9%)  931 (24.3%)  745 (19.5%)  2242 (58.6%)  NA 
Boorjian (2011)  ORP  NA  NA  NA  NA  NA  NA 
Chul Koo (2014)
High risk disease 
RARP  Yes  NA  38 (38%)  7 (7%)  47 (47%)  Clavien 1: 4%; Clavien 2:1% Clavien 3: 8% 
Chul Koo (2014)
Very high risk disease 
RARP  Yes  NA  29 (54%)  13 (25%)  43 (60%)  Clavien 1: 4%; Clavien 2: 2% Clavien 3: 12% 
Dell'Oglio (2016)  ORP  Yes  NA  257 (42.8%)  174 (29%)  259 (43.2%)  NA 
Manoharan (2003)  ORP  Yes  34 (43%)  54 (68%)  2 (2.5%)  32 (40.5%)  NA 
Bastian (2006)  NA  Yes  235 (63.7%)  211 (57.2%)  46 (12.5%)  131 (35.5%)  NA 
Westover (2011)  ORP  Yes  NA  NA  NA  NA  NA 
Pokala (2013)  NA  Yes (80.2%)  NA  NA  2228 (7.3%)  NA  NA 
Carver (2006)  ORP  Yes  107 (61%)  27 (15%)  33 (19%)  47 (27%)  NA 
Freedland (2007)  NA  Yes  53 (91%)  24 (41%)  18 (31%)  13 (22%)  NA 
Moltzahn (2014)  NA  Yes  186 (69.9%)  82 (30.8%)  30 (12.2%)  152 (57.1%)  NA 
Joniau (2012)  ORP  Yes  47 (92.2%)  NA  11 (21.6%)  32 (62.7%)  NA 
Brandli (2003)  NA  Yes  14 (28%)  48 (96%)  2 (4%)  23 (46%)  NA 
Zwergel (2007)  NA  Yes  216 (78%)  77 (28%)  78 (28.4%)  NA  Mortality (1 month): 4 (1.4%) 
Nguyen (2009)  ORP - LRP  Yes  20 (48%)  3 (7.5%)  5 (12%)  15 (36%)  NA 
Spahn (2010)  NA  Yes  561 (78.7%)  183 (25.7%)  175 (25.6%)  392 (55.1%)  NA 
Berglund (2006)  NA  Yes  225 (80%)  NA  23 (8.9%)  52 (18.5%)  9.7%; mortality 0% 
Loeb (2007)  ORP  Yes  165 (57%)  102 (36%)  17 (6%)  118 (41%)  11%; mortality 0% 
Miocinovic (2011)  NA  Yes  NA  NA  NA  NA  NA 
Savdie (2012)  ORP  Yes  74 (51.6%)  35 (22.9%)  3 (1.9%)  75 (49%)  NA 



Légende :
NA: not available; PLND: pelvic lymph node dissection; ORP: open radical prostatectomy; RARP: robot-assisted radical prostatectomy; LRP: laparoscopic radical prostatectomy.



Table 3 - Adjuvant or salvage treatment modalities.
Author (yr)  Adjuvant therapy 
Salvage therapy 
  aRT  aHT  aRT+aHT  sRT  sHT  sRT+sHT 
Yossepowitch (2007)  NA  NA  NA 
Yossepowitch (2008)  NA  NA  NA  272 (20%)  204 (15%)  NA 
Lodde (2008)  NA  NA  NA  NA  NA  NA 
Loeb (2010)  3 (1.9%)  13 (7.4%)  51 (29%)  NA 
Spahn (2010)  299 (80%)  NA  NA  NA 
Walz (2010)  NA  NA  NA  NA  NA  NA 
Ploussard (2009)  4 (3.6%)  14 (12.7%)  6 (5.6%) 
Ploussard (2011)  289 (35.5%)  289 (35.5%)  289 (35.5%)  195 (24%)  92 (11.3%)  73 (9%) 
Pierorazo (2011) Before 2000 Area  NA  NA  NA  NA  NA  NA 
Pierorazo (2011) After 2000 Area  NA  NA  NA  NA  NA  NA 
Masson-Lecompte (2010)  21 (15%)  31 (22.5%)  4 (3%)  10 (7.2%) 
Roder (2013)  10 (4.3%)  32 (13.8%)  51 (22.1%)  NA 
Abdollah (2015)  53 (4.81%)  12 (1.11%)  177 (16.1%)  109 (9.9%)  185 (16.8%) 
Di Benedetto (2015)  8 (1.8%)  10 (2.2%)  34 (7.6%)  37 (8.3%)  NA 
Briganti (2014)  NA  NA  NA 
Busch (2014)  NA  NA  NA  NA  NA  NA 
Park (2013)  20 (36.4%)  28 (50.9%)  NA  NA  NA 
Kulkarni (2015)  65 (31.2%)  NA  NA  NA  NA  NA 
Arcangeli (2009)  83 (68%)  NA  NA 
Kawamorita (2009)  NA  NA  NA 
Briganti (2012)  112 (8.2%)  406 (29.7%)  139 (10.2%)  NA  NA  NA 
Castelli (2014)  74 (30.4%)  34 (13.9%) 
Lee (2014)  26 (10.4%) 
Briganti (2013)  226 (5.9%)  863 (22.5%)  2739 (71.6%) 
Boorjian (2011)  85 (6.9%)  367 (29.6%)  51 (4.1%)  253 (20.4%)  415 (33.5%)  NA 
Chul Koo (2014) High Risk disease  2 (2%)  11 (11%)  2 (2%) 
Chul Koo (2014) Very High Risk disease  2 (4%)  14 (26%)  2 (4%) 
Dell'Oglio (2016)  157 (26.2%)  202 (33.7%)  NA  NA  NA  NA 
Manoharan (2003) 
Bastian (2006)  NA  NA  NA 
Westover (2011)  NA  NA  NA  13 (4.6%)  NA  NA 
Pokala (2013)  3915 (12.9%)  NA  NA  NA  NA  NA 
Carver (2006)  17 (10%)  65 (77%)  NA 
Freedland (2007)  2 (3.4%)  5 (8.6%)  7 (12.1%)  1 (1.7%) 
Moltzahn (2014)  45 (16.9%)  106 (39.8%)  21 (7.9%)  NA  NA  NA 
Joniau (2012)  27 (52.9%)  27 (52.9%)  27 (52.9%)  18 (35.3%)  18 (35.3%)  18 (35.3%) 
Brandli (2003)  NA  NA  NA  NA  NA  NA 
Zwergel (2007)  2 (0.7%)  129 (46.9%)  NA  36 (13.1%) 
Nguyen (2009)  6 (14.6%)  18 (43.9%)  NA 
Spahn (2010)  109 (15.3%)  356 (50%)  NA  67 (9.4%)  111 (15.6%)  NA 
Berglund (2006)  2 (0.7%) 
Loeb (2007)  24 (8.3%)  31 (11%)  20 (6.9%)  34 (11.8%)  47 (16.3%) 
Miocinovic (2011)  8 (3%)  8 (3%)  32 (12%)  46 (17.2%)  17 (6.4%) 
Savdie (2012)  NA  NA  NA  NA  NA  NA 



Légende :
NA: not available; aRT: adjuvant radiotherapy; aHT: adjuvant hormonal therapy; sRT: salvage radiotherapy; sHT: salvage hormonal therapy.



Table 4 - Oncological and functional outcomes.
Author (yr)  Follow-up in month (median)  Biochemical recurrence free survival  Clinical recurrence-free survival  Metastasis-free survival  Cancer-specific survival  Overall survival  Functional outcomes 
Yossepowitch (2007)  51.6  5 years: 68%; 10 years: 59%  NA  NA  NA  NA  NA 
Yossepowitch (2008)  66  NA  NA  5 years: 92%; 10 years: 85%  5 years: 97.7%; 10 years: 93%  NA  NA 
Lodde (2008)  98.2  10 years: 45%  NA  NA  10 years: 89.7%  NA  NA 
Loeb (2010)  96  10 years: 68%  NA  10 years: 84%  10 years: 92%  NA  NA 
Spahn (2010)  60  5 years: 76.6%; 10 years: 56.2%  5 years: 86.2%; 10 years: 79.9%  NA  5 years: 91.3%; 10 years: 87.2%  5 years: 84.3%; 10 years: 72.1%  NA 
Walz (2010)  28.8  5 years: 47.4%; 10 years: 35.7%  NA  NA  NA  NA  NA 
Ploussard (2009)  37.6  1 year: 79.4%; 3 years: 69.8%  NA  NA  NA  NA  NA 
Ploussard (2011)  63.7  5 years: 74.1%  NA  5 years: 96.1%  NA  5 years: 98.6%  NA 
Pierorazo (2011)
Before 2000 area 
NA  10 years: 44.1%  NA  10 years: 77.1%  10 years: 83.3%  NA  NA 
Pierorazo (2011)
After 2000 area 
NA  10 years: 36.4%  NA  10 years: 85.1%  10 years: 96.2%  NA  NA 
Masson-Lecompte (2010)  53  5 years: 40%  NA  NA  NA  NA  NA 
Roder (2013)  52.8  10 years: 49%  NA  10 years: 81%  10 years: 90%  10 years: 84%  NA 
Abdollah (2015)  49  5 years: 62.3%; 10 years: 50.4%  5 years: 94.2%; 10 years: 87.4%  NA  NA  NA  NA 
Di Benedetto (2015)  24.9  2 years: 79.2%  NA  NA  2 years: 79.2%  2 years: 100%  2 years: 91.8% continent (PAD Free) 64.4% potent (previously potent non-diabetic men aged<70 years after bilateral nerve preservation) 
Briganti (2014)  70  5 years: 55.2%  NA  NA  5 years: 93.7%; 10 years: 85.2%  NA  NA 
Busch (2014)  34.7  3 years: 57.8%  NA  NA  NA  3 years: 97.8%  NA 
Park (2013)  31  3 years: 82.6%  NA  NA  NA  NA  3 month: 69.1% continent (<1 pad/day) 61.8% potent (previously potent) 
Kulkarni (2015)  NA  7 years: 42.4%; 10 years: 36.7%  NA  7 years: 71.1%; 10 years: 64.4%  7 years: 79.7%; 10 years: 65%  NA  1 year: 96.2% continent 
Arcangeli (2009)  33.7  3 years: 69.8%  NA  NA  NA  NA  81% continent 
Kawamorita (2009)  39  3 years: 64.5%  NA  NA  NA  NA  NA 
Briganti (2012)  186  5 years: 69.4%; 10 years: 53.8%  NA  NA  5 years: 96.3%; 10 years: 91.1%  NA  NA 
Castelli (2014)  54.17  5 years: 94%  5 years: 85%  NA  5 years: 95%  5 years: 87%  NA 
Lee (2014)  71  NA  NA  NA  5 years: 96.5%  NA  NA 
Briganti (2013)  72  NA  NA  NA  10 years: 94.1%  10 years: 79.7%  NA 
Boorjian (2011)  122.4  NA  NA  5 years: 93%; 10 years: 85% 15 years: 79%  5 years: 97%; 10 years: 92% 15 years: 85%  5 years: 92%; 10 years: 77% 15 years: 56%  NA 
Chul Koo (2014)
High risk disease 
31.1  3 years: 77%  NA  NA  NA  NA  1 year: 56% continent 
Chul Koo (2014)
Very high risk disease 
36.1  3 years: 58%  NA  NA  NA  NA  1 year: 32% continent 
Dell'Oglio (2016)  116  NA  NA  NA  10 years: 88.4%; 15 years: 84.5% 20 years: 81.6%  10 years: 82.9%; 15 years: 71% 20 years: 62.3%  NA 
Manoharan (2003)  54.7  4 years: 62%  NA  NA  NA  NA  NA 
Bastian (2006)  NA  Johns Hopkins cohort: 5 years: 40% 10 years: 27% SEARCH cohort: 5 years: 32% 10 years: 28%  NA  NA  NA  NA  NA 
Westover (2011)  91.2  NA  NA  NA  5 years: 100%  NA  NA 
Pokala (2013)  NA  NA  NA  NA  5 years: 96.4%; 10 years: 89.5%; 15 years: 82%; 20 years: 72.9%  5 years: 92.8%; 10 years: 78.6%; 15 years: 59.5%; 20 years: 38.6%  NA 
Carver (2006)  76.8  5 years: 48%; 10 years: 44%  5 years: 86%; 10 years: 76%  NA  5 years: 94%; 10 years: 85%  NA  NA 
Freedland (2007)  156  5 years: 62%; 10 years: 49% 15 years: 49%  NA  5 years: 90%; 10 years: 80% 15 years: 73%  5 years: 98%; 10 years: 91% 15 years: 84%  NA  NA 
Moltzahn (2014)  111  NA  NA  NA  10 years: 87.9%  10 years: 76.6%  NA 
Joniau (2012)  108  5 years: 52.7%; 10 years: 45.8%  5 years: 78%; 10 years: 72.5%  NA  5 years: 91.9%; 10 years: 91.9%  5 years: 88%; 10 years: 70.7%  NA 
Brandli (2003)  54  3 years: 60%; 5 years: 48%  NA  NA  NA  NA  NA 
Zwergel (2007)  42  NA  NA  NA  5 years: 93%; 10 years: 83% 15 years: 71%  5 years: 87%; 10 years: 70% 15 years: 58%  NA 
Nguyen (2009)  94  5 years: 53%  NA  NA  8 years: 92.7%  8 years: 82.9%  NA 
Spahn (2010)  77  5 years: 64.8%; 10 years: 51.9%  5 years: 82.3%; 10 years: 73.3%  NA  5 years: 89.8%; 10 years: 84.5%  5 years: 73.6%; 10 years: 58%  NA 
Berglund (2006)  34  3 years: 70.4%  NA  5 years: 96.1%  5 years: 98.9%  5 years: 97.2%  1 year: 90% continent 
Loeb (2007)  88  7 years: 39%; 10 years: 35%  NA  NA  7 years: 92%; 10 years: 88%  7 years: 91%; 10 years: 74%  92% continent; 60% potent (previously potent and no adjuvant treatment) 
Miocinovic (2011)  80.4  8 years: 46%  NA  8 years: 87%  8 years: 93%  NA  NA 
Savdie (2012)  95  5 year: 65.5%; 10 years: 55.4%  NA  NA  NA  NA  NA 



Légende :
NA: not available.


References



Grubb R.L., Kibel A.S. High-risk localized prostate cancer: role of radical prostatectomy Curr Opin Urol 2010 ;  20 : 204-21010.1097/MOU.0b013e3283384101 [cross-ref]
Yossepowitch O., Eggener S.E., Bianco F.J., Carver B.S., Serio A., Scardino P.T., et al. Radical prostatectomy for clinically localized, high risk prostate cancer: critical analysis of risk assessment methods J Urol 2007 ;  178 : 493-49910.1016/j.juro.2007.03.105[discussion 499].
 [cross-ref]
Yossepowitch O., Eggener S.E., Serio A.M., Carver B.S., Bianco F.J.J., Scardino P.T., et al. Secondary therapy, metastatic progression, and cancer-specific mortality in men with clinically high-risk prostate cancer treated with radical prostatectomy Eur Urol 2008 ;  53 : 950-95910.1016/j.eururo.2007.10.008 [cross-ref]
Lodde M., Harel F., Lacombe L., Fradet Y. Substratification of high-risk localised prostate cancer treated by radical prostatectomy World J Urol 2008 ;  26 : 225-22910.1007/s00345-008-0252-5 [cross-ref]
Loeb S., Schaeffer E.M., Trock B.J., Epstein J.I., Humphreys E.B., Walsh P.C. What are the outcomes of radical prostatectomy for high-risk prostate cancer? Urology 2010 ;  76 : 710-71410.1016/j.urology.2009.09.014 [inter-ref]
Spahn M., Weiss C., Bader P., Ströbel P., Gerharz E.W., Kneitz B., et al. Long-term outcome of patients with high-risk prostate cancer following radical prostatectomy and stage-dependent adjuvant androgen deprivation Urol Int 2010 ;  84 : 164-17310.1159/000277593 [cross-ref]
Walz J., Joniau S., Chun F.K., Isbarn H., Jeldres C., Yossepowitch O., et al. Pathological results and rates of treatment failure in high-risk prostate cancer patients after radical prostatectomy BJU Int 2011 ;  107 : 765-77010.1111/j.1464-410X.2010.09594.x [cross-ref]
Ploussard G., Salomon L., Allory Y., Terry S., Vordos D., Hoznek A., et al. Pathological findings and prostate-specific antigen outcomes after laparoscopic radical prostatectomy for high-risk prostate cancer BJU Int 2010 ;  106 : 86-9010.1111/j.1464-410X.2009.09080.x
Ploussard G., Masson-Lecomte A., Beauval J.-B., Ouzzane A., Bonniol R., Buge F., et al. Radical prostatectomy for high-risk prostate cancer defined by preoperative criteria: oncologic follow-up in national multicenter study in 813 patients and assessment of easy-to-use prognostic substratification Urology 2011 ;  78 : 607-61310.1016/j.urology.2011.05.021 [inter-ref]
Pierorazio P.M., Ross A.E., Han M., Epstein J.I., Partin A.W., Schaeffer E.M. Evolution of the clinical presentation of men undergoing radical prostatectomy for high-risk prostate cancer BJU Int 2012 ;  109 : 988-99310.1111/j.1464-410X.2011.10514.x [cross-ref]
Masson-Lecomte A., Hupertan V., Comperat E., Vaessen C., Chartier-Kastler E., Cussenot O., et al. Pathological findings and oncological control afforded by radical prostatectomy in men with high-risk prostate cancer: a single-centre study World J Urol 2011 ;  29 : 665-67010.1007/s00345-010-0608-5
Røder M.A., Berg K.D., Christensen I.J., Gruschy L., Brasso K., Iversen P. Radical prostatectomy in clinically localized high-risk prostate cancer: outcome of 231 consecutive patients Scand J Urol 2013 ;  47 : 19-2510.3109/00365599.2012.698304
Abdollah F., Sood A., Sammon J.D., Hsu L., Beyer B., Moschini M., et al. Long-term cancer control outcomes in patients with clinically high-risk prostate cancer treated with robot-assisted radical prostatectomy: results from a multi-institutional study of 1100 patients Eur Urol 2015 ;  68 : 497-50510.1016/j.eururo.2015.06.020 [cross-ref]
Di Benedetto A., Soares R., Dovey Z., Bott S., McGregor R.G., Eden C.G. Laparoscopic radical prostatectomy for high-risk prostate cancer BJU Int 2015 ;  115 : 780-78610.1111/bju.12797
Briganti A., Karnes R.J., Gandaglia G., Spahn M., Gontero P., Tosco L., et al. Natural history of surgically treated high-risk prostate cancer Urol Oncol 2015 ;  33 : 16310.1016/j.urolonc.2014.11.018[e7-13].
Busch J., Magheli A., Leva N., Hinz S., Ferrari M., Friedersdorff F., et al. Matched comparison of outcomes following open and minimally invasive radical prostatectomy for high-risk patients World J Urol 2014 ;  32 : 1411-141610.1007/s00345-014-1270-0
Park D.S., Gong I.H., Choi D.K., Hwang J.H., Shin H.S., Oh J.J. Radical prostatectomy versus high dose permanent prostate brachytherapy using iodine-125 seeds for patients with high risk prostate cancer: a matched cohort analysis World J Urol 2013 ;  31 : 1511-151710.1007/s00345-013-1086-3
Kulkarni J.N., Gunavanthe V.S., Dhale A. Outcome of radical prostatectomy as primary treatment for high-risk prostate cancer patients Indian J Cancer 2015 ;  52 : 646-65210.4103/0019-509X.178446
Arcangeli G., Strigari L., Arcangeli S., Petrongari M.G., Saracino B., Gomellini S., et al. Retrospective comparison of external beam radiotherapy and radical prostatectomy in high-risk, clinically localized prostate cancer Int J Radiat Oncol Biol Phys 2009 ;  75 : 975-98210.1016/j.ijrobp.2008.12.045 [cross-ref]
Kawamorita N., Saito S., Ishidoya S., Ito A., Saito H., Kato M., et al. Radical prostatectomy for high-risk prostate cancer: biochemical outcome Int J Urol Off J Jpn Urol Assoc 2009 ;  16 : 733-73810.1111/j.1442-2042.2009.02352.x
Briganti A., Joniau S., Gontero P., Abdollah F., Passoni N.M., Tombal B., et al. Identifying the best candidate for radical prostatectomy among patients with high-risk prostate cancer Eur Urol 2012 ;  61 : 584-59210.1016/j.eururo.2011.11.043 [cross-ref]
Castelli T., Russo G.I., Favilla V., Urzi D., Spitaleri F., Reale G., et al. Tailored treatment including radical prostatectomy and radiation therapy+androgen deprivation therapy versus exclusive radical prostatectomy in high-risk prostate cancer patients: results from a prospective study Int Braz J Urol Off J Braz Soc Urol 2014 ;  40 : 322-329
Lee J.Y., Cho K.S., Kwon J.K., Jeh S.U., Kang H.W., Diaz R.R., et al. A competing risk analysis of cancer-specific mortality of initial treatment with radical prostatectomy versus radiation therapy in clinically localized high-risk prostate cancer Ann Surg Oncol 2014 ;  21 : 4026-403310.1245/s10434-014-3780-9
Briganti A., Spahn M., Joniau S., Gontero P., Bianchi M., Kneitz B., et al. Impact of age and comorbidities on long-term survival of patients with high-risk prostate cancer treated with radical prostatectomy: a multi-institutional competing-risks analysis Eur Urol 2013 ;  63 : 693-70110.1016/j.eururo.2012.08.054 [cross-ref]
Boorjian S.A., Karnes R.J., Viterbo R., Rangel L.J., Bergstralh E.J., Horwitz E.M., et al. Long-term survival after radical prostatectomy versus external-beam radiotherapy for patients with high-risk prostate cancer Cancer 2011 ;  117 : 2883-289110.1002/cncr.25900 [cross-ref]
Koo K.C., Jung D.C., Lee S.H., Choi Y.D., Chung B.H., Hong S.J., et al. Feasibility of robot-assisted radical prostatectomy for very-high risk prostate cancer: surgical and oncological outcomes in men aged≥70 years Prostate Int 2014 ;  2 : 127-13210.12954/PI.14050
Dell'Oglio P., Karnes R.J., Joniau S., Spahn M., Gontero P., Tosco L., et al. Very long-term survival patterns of young patients treated with radical prostatectomy for high-risk prostate cancer Urol Oncol 2016 ;  34 : 23410.1016/j.urolonc.2015.11.018[e13-234.e19].
Manoharan M., Bird V.G., Kim S.S., Civantos F., Soloway M.S. Outcome after radical prostatectomy with a pretreatment prostate biopsy Gleason score of>=8 BJU Int 2003 ;  92 : 539-544 [cross-ref]
Bastian P.J., Gonzalgo M.L., Aronson W.J., Terris M.K., Kane C.J., Amling C.L., et al. Clinical and pathologic outcome after radical prostatectomy for prostate cancer patients with a preoperative Gleason sum of 8 to 10 Cancer 2006 ;  107 : 1265-127210.1002/cncr.22116 [cross-ref]
Westover K., Chen M.-H., Moul J., Robertson C., Polascik T., Dosoretz D., et al. Radical prostatectomy vs. radiation therapy and androgen-suppression therapy in high-risk prostate cancer BJU Int 2012 ;  110 : 1116-112110.1111/j.1464-410X.2012.11012.x [cross-ref]
Pokala N., Trulson J.J., Islam M. Long-term outcome following radical prostatectomy for Gleason 8-10 prostatic adenocarcinoma World J Urol 2014 ;  32 : 1385-139210.1007/s00345-014-1253-1 [cross-ref]
Carver B.S., Bianco F.J., Scardino P.T., Eastham J.A. Long-term outcome following radical prostatectomy in men with clinical stage T3 prostate cancer J Urol 2006 ;  176 : 564-56810.1016/j.juro.2006.03.093 [cross-ref]
Freedland S.J., Partin A.W., Humphreys E.B., Mangold L.A., Walsh P.C. Radical prostatectomy for clinical stage T3a disease Cancer 2007 ;  109 : 1273-127810.1002/cncr.22544 [cross-ref]
Moltzahn F., Karnes J., Gontero P., Kneitz B., Tombal B., Bader P., et al. Predicting prostate cancer-specific outcome after radical prostatectomy among men with very high-risk cT3b/4 PCa: a multi-institutional outcome study of 266 patients Prostate Cancer Prostatic Dis 2015 ;  18 : 31-3710.1038/pcan.2014.41
Joniau S., Hsu C.-Y., Gontero P., Spahn M., Van Poppel H. Radical prostatectomy in very high-risk localized prostate cancer: long-term outcomes and outcome predictors Scand J Urol Nephrol 2012 ;  46 : 164-17110.3109/00365599.2011.637956
Brandli D.W., Koch M.O., Foster R.S., Bihrle R., Gardner T.A. Biochemical disease-free survival in patients with a high prostate-specific antigen level (20-100ng/mL) and clinically localized prostate cancer after radical prostatectomy BJU Int 2003 ;  92 : [19-22-23].
Zwergel U., Suttmann H., Schroeder T., Siemer S., Wullich B., Kamradt J., et al. Outcome of prostate cancer patients with initial PSA>or=20ng/mL undergoing radical prostatectomy Eur Urol 2007 ;  52 : 1058-106510.1016/j.eururo.2007.03.056 [cross-ref]
Nguyen K., Eltz S., Drouin S.J., Comperat E., Audenet F., Renard-Penna R., et al. Oncologic outcome after radical prostatectomy in men with PSA values above 20ng/mL: a monocentric experience World J Urol 2009 ;  27 : 653-65810.1007/s00345-009-0419-8
Spahn M., Joniau S., Gontero P., Fieuws S., Marchioro G., Tombal B., et al. Outcome predictors of radical prostatectomy in patients with prostate-specific antigen greater than 20ng/mL: a European multi-institutional study of 712 patients Eur Urol 2010 ;  58 : 10.1016/j.eururo.2010.03.001[1-7-11].
Berglund R.K., Jones J.S., Ulchaker J.C., Fergany A., Gill I., Kaouk J., et al. Radical prostatectomy as primary treatment modality for locally advanced prostate cancer: a prospective analysis Urology 2006 ;  67 : 1253-125610.1016/j.urology.2005.12.003 [inter-ref]
Loeb S., Smith N.D., Roehl K.A., Catalona W.J. Intermediate-term potency, continence, and survival outcomes of radical prostatectomy for clinically high-risk or locally advanced prostate cancer Urology 2007 ;  69 : 1170-117510.1016/j.urology.2007.02.054 [inter-ref]
Miocinovic R., Berglund R.K., Stephenson A.J., Jones J.S., Fergany A., Kaouk J., et al. Avoiding androgen deprivation therapy in men with high-risk prostate cancer: the role of radical prostatectomy as initial treatment Urology 2011 ;  77 : 946-95010.1016/j.urology.2010.11.057 [inter-ref]
Savdie R., Symons J., Spernat D., Yuen C., Pe Benito R.A., Haynes A.-M., et al. High-dose rate brachytherapy compared with open radical prostatectomy for the treatment of high-risk prostate cancer: 10 years biochemical freedom from relapse BJU Int 2012 ;  110 (Suppl 4) : 71-7610.1111/j.1464-410X.2012.11480.x
Bolla M., Collette L., Blank L., Warde P., Dubois J.B., Mirimanoff R.-O., et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial Lancet Lond Engl 2002 ;  360 : 103-106 [cross-ref]
Steinberg D.M., Sauvageot J., Piantadosi S., Epstein J.I. Correlation of prostate needle biopsy and radical prostatectomy Gleason grade in academic and community settings Am J Surg Pathol 1997 ;  21 : 566-576 [cross-ref]
Zelefsky M.J., Eastham J.A., Cronin A.M., Fuks Z., Zhang Z., Yamada Y., et al. Metastasis after radical prostatectomy or external beam radiotherapy for patients with clinically localized prostate cancer: a comparison of clinical cohorts adjusted for case mix J Clin Oncol Off J Am Soc Clin Oncol 2010 ;  28 : 1508-151310.1200/JCO.2009.22.2265 [cross-ref]
Wallis C.J.D., Saskin R., Choo R., Herschorn S., Kodama R.T., Satkunasivam R., et al. Surgery versus radiotherapy for clinically-localized prostate cancer: a systematic review and meta-analysis Eur Urol 2015 ;  70 : 21-3010.1016/j.eururo.2015.11.010
Robinson D., Garmo H., Lissbrant I.F., Widmark A., Pettersson A., Gunnlaugsson A., et al. Prostate cancer death after radiotherapy or radical prostatectomy: a nationwide population-based observational study Eur Urol 2017 ;  73 : 502-51110.1016/j.eururo.2017.11.039
Touijer K.A., Mazzola C.R., Sjoberg D.D., Scardino P.T., Eastham J.A. Long-term outcomes of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy Eur Urol 2014 ;  65 : 20-2510.1016/j.eururo.2013.03.053 [cross-ref]






© 2018 
Elsevier Masson SAS. Tous droits réservés.